Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Frontiers of Medicine ; (4): 416-428, 2022.
Article in English | WPRIM | ID: wpr-939880

ABSTRACT

Abivertinib, a third-generation tyrosine kinase inhibitor, is originally designed to target epidermal growth factor receptor (EGFR)-activating mutations. Previous studies have shown that abivertinib has promising antitumor activity and a well-tolerated safety profile in patients with non-small-cell lung cancer. However, abivertinib also exhibited high inhibitory activity against Bruton's tyrosine kinase and Janus kinase 3. Given that these kinases play some roles in the progression of megakaryopoiesis, we speculate that abivertinib can affect megakaryocyte (MK) differentiation and platelet biogenesis. We treated cord blood CD34+ hematopoietic stem cells, Meg-01 cells, and C57BL/6 mice with abivertinib and observed megakaryopoiesis to determine the biological effect of abivertinib on MK differentiation and platelet biogenesis. Our in vitro results showed that abivertinib impaired the CFU-MK formation, proliferation of CD34+ HSC-derived MK progenitor cells, and differentiation and functions of MKs and inhibited Meg-01-derived MK differentiation. These results suggested that megakaryopoiesis was inhibited by abivertinib. We also demonstrated in vivo that abivertinib decreased the number of MKs in bone marrow and platelet counts in mice, which suggested that thrombopoiesis was also inhibited. Thus, these preclinical data collectively suggested that abivertinib could inhibit MK differentiation and platelet biogenesis and might be an agent for thrombocythemia.


Subject(s)
Animals , Mice , Acrylamides/pharmacology , Blood Platelets/drug effects , Cell Differentiation , Megakaryocytes/drug effects , Mice, Inbred C57BL , Piperazines/pharmacology , Pyrimidines/pharmacology
2.
Journal of Southern Medical University ; (12): 1134-1140, 2020.
Article in Chinese | WPRIM | ID: wpr-828907

ABSTRACT

OBJECTIVE@#To explore whether thrombopoietin (TPO) can rescue megakaryopoiesis by protecting bone marrowderived endothelial progenitor cells (BM-EPCs) in patients receiving chemotherapy for hematological malignancies.@*METHODS@#Bone marrow samples were collected from 23 patients with hematological malignancies 30 days after chemotherapy and from 10 healthy volunteers. BM-EPCs isolated from the samples were identified by staining for CD34, CD309 and CD133, and their proliferation in response to treatment with TPO was assessed using CCK8 assay. DiL-Ac-LDL uptake and FITC-UEA-I binding assay were performed to evaluate the amount of BM-EPCs from the subjects. Tube-formation and migration experiments were used for functional assessment of the BM-EPCs. The BM-EPCs with or without TPO treatment were co-cultured with human megakaryocytes, and the proliferation of the megakaryocytes was detected with flow cytometry.@*RESULTS@#Flow cytometry indicated that the TPO-treated cells had high expressions of CD34, CD133, and CD309. CCK8 assay demonstrated that TPO treatment enhanced the proliferation of the BM-EPCs, and the optimal concentration of TPO was 100 μg/L. Double immunofluorescence assay indicated that the number of BM-EPC was significantly higher in TPO-treated group than in the control group. The TPO-treated BM-EPCs exhibited stronger tube-formation and migration abilities ( < 0.05) and more significantly enhanced the proliferation of co-cultured human megakaryocytes than the control cells ( < 0.05).@*CONCLUSIONS@#TPO can directly stimulate megakaryopoiesis and reduce hemorrhage via protecting the function of BM-EPCs in patients following chemotherapy for hematological malignancies.


Subject(s)
Humans , Bone Marrow , Bone Marrow Cells , Cells, Cultured , Hematologic Neoplasms , Megakaryocytes , Thrombopoietin
3.
Acta bioquím. clín. latinoam ; 50(2): 233-245, jun. 2016. ilus, tab
Article in Spanish | LILACS | ID: biblio-837602

ABSTRACT

Tal vez por haber sido consideradas como simples restos citoplasmáticos de los megacariocitos encargadas únicamente de la reparación de heridas, las plaquetas han tenido un lugar secundario en cuanto a su estudio e interés en comparación con los otros componentes celulares de la sangre. Sin embargo, en los últimos 20 años se ha avanzado mucho en el conocimiento de estas fascinantes células que de a poco han recobrado un lugar destacado dentro de la hematología. A lo largo de este trabajo se han revisado los aportes más destacados y novedosos acerca del proceso de biogénesis plaquetaria, su regulación por el microambiente medular y factores humorales, recorriendo desde la generación de megacariocitos hasta la liberación de plaquetas libres.


Perhaps for being considered mere megakaryocyte cytoplasmic debris responsible for wound repair alone, platelets have had a secondary role when compared to other cellular blood components. However, in the last 20 years we have learned much more about these fascinating cells, which have slowly regained a prominent place in hematology. This review discusses the most outstanding and novel contributions on platelet biogenesis, its regulation by the bone marrow microenvironment and humoral factors, analyzing from megakaryocyte generation to platelet release.


Talvez por ter sido considerados simples restos citoplasmáticos dos megacariócitos, encarregadas apenas da reparação de feridas, as plaquetas têm tido um lugar secundário quanto a seu estudo e interesse em comparação com os outros componentes celulares do sangue. Entretanto, nos últimos 20 anos foi possível aprender muito a respeito destas fascinantes células que aos poucos foram recobrando um lugar de destaque dentro da hematologia. Ao longo deste trabalho foram revistas as contribuições mais destacadas e novas acerca do processo de biogênese plaquetária, sua regulação pelo microambiente medular e fatores humorais, percorrendo desde a geração de megacariócitos até a liberação de plaquetas livres.


Subject(s)
Female , Megakaryocytes , Cells , Origin of Life , Cytoplasm , Hematology
4.
Gac. méd. Méx ; 146(2): 136-143, mar.-abr. 2010. ilus
Article in Spanish | LILACS | ID: lil-566761

ABSTRACT

La hematotoxicología es un área poco estudiada en nuestro país y es limitado el conocimiento sobre el efecto que ciertos contaminantes atmosféricos inducen en la sangre y en la médula ósea. La contaminación por partículas suspendidas ha cobrado más interés, por los contaminantes que se adhieren a su superficie. Un ejemplo es el benceno, relacionado con aplasia medular y leucemia. Algunos metales que también están en las partículas inhaladas son hematotóxicos. Uno de ellos es el vanadio, que nuestro grupo ha identificado como un agente inductor de alteraciones en la megacariopoyesis, lo que motivó esta revisión. Las plaquetas desempeñan un papel muy importante en la hemostasia y derivan de la célula más grande de la médula ósea: el megacariocito. Hasta hace algunos años desconocíamos casi todo del megacariocito, pero con la clonación de la trombopoyetina, en 1994, la principal hormona reguladora de la producción plaquetaria, ha existido un desarrollo acelerado en el conocimiento de la megacariopoyesis. Este artículo hace una revisión de la megacariopoyesis y su regulación, con énfasis en las vías de señalización implicadas. Además, se mencionan algunas enfermedades relacionadas y se discuten las perspectivas de investigación de este proceso, con énfasis en la toxicología.


Hematotoxicology has been studied with less interest than other fields associated with atmospheric pollution. There is limited knowledge about on the effects that certain atmospheric pollutants may provoke in the blood and bone marrow. Suspended particle pollution has become an area of scientific inquiry due to the contaminants adhering to its surface. We have identified the association of inhaled vanadium and variations in megakaryopoyesis and thrombopoyesis. Platelets are the smallest elements in the blood, but they play a strategic role in hemostasis. They are derived from the largest cell of the bone marrow, the megakaryocite. This cell size is about 150 microm, with apolyploid nucleus and unknown origin until few years ago. When TPO was cloned in 1994 the knowledge about megakaryocyte began to growth exponentially, elucidating the mechanisms of proliferation, differentiation and release of platelets. More information is still needed in order to translate knowledge into clinical application for diseases such as thrombocytopenia or thrombocytosis. A review of the current concepts of megakaryopoiesis and its regulation, with emphasis on signaling pathways are presented in this paper; a classification in TPO-dependent and TPO-independent is also detailed. In addition, we review some diseases associated with changes in the signaling pathway of megakaryopoyesis, as well as possible perspectives in this field, including toxicology.


Subject(s)
Humans , Animals , Megakaryocytes/physiology , Signal Transduction , Cytokines/physiology , Chemokines/physiology , Thrombopoiesis/physiology
5.
Immune Network ; : 47-52, 2003.
Article in Korean | WPRIM | ID: wpr-146210

ABSTRACT

BACKGROUND: The megakaryopoiesis and platelet production is regulated by several hematopoietc factors such as thrombopoietin (TPO), interleukin-11 (IL-11) and interleukin-3 (IL-3). IL-11 is a potent stimulator of megakaryopoiesis in vivo, and acts primarily as a megakaryocyte maturation factor in vitro and it can act synergistically with IL-3 and TPO. We performed this study to investigate the effects of recombinant human IL-11 (rhIL-11) with other hematopoietic factors on megakaryocyte colony formation in vitro. METHODS: CD34+ cells were separated from umbilical cord blood and megakaryocyte colonies using MegaCult Assay Kit were cultured with rhIL-11, recombinant human IL-3 (rhIL-3), and recombinant human TPO (rhTPO) for 7 and 14 days. The number and percentage of CD34+ and CD41a+ cells were determined by flowcytometry. RESULTS: The number of CD41a+ cells were 0.54+/-0.05x10(4) (rhIL-11 100 ng/ml), 5.32+.-0.23x10(4) (rhIL-3 100 ng/ml), and 8.76+/-0.15x10(4) (rhTPO 50 ng/ml) of total expanded cells during the culture of the purified CD34+ cells in liquid phase for 7 days. The number of CD41a+ cells were increased to 7.47+/-0.69x10(4) (rhIL-3 rhIL-11), 11.92+/-0.19x10(4) (rhTPO rhIL-11) of total expanded cells, respectively, during the culture of the purified CD34+ cells in liquid phase for 7 days in the presence of rhIL-11 (100 ng/ml). When the purified CD34+ cells were cultured in semisolid media including various concentration of rhIL-11, the megakaryocyte colonies were not formed. When the purified CD34+ cells were cultured with rhIL-11 and rhTPO or with rhIL-11 and rhIL-3, the number of megakaryocyte colonies were increased compared with rhTPO or rhIL-3 alone. CONCLUSION: These results indicate that IL-11 exerts a potent proliferative activity to colony forming unit-megakaryocyte from human umbilical cord blood, and it acts with other hematopoietic factors synergistically


Subject(s)
Humans , Blood Platelets , Fetal Blood , Interleukin-11 , Interleukin-3 , Megakaryocytes , Thrombopoietin , Umbilical Cord
6.
The Korean Journal of Laboratory Medicine ; : 229-233, 2003.
Article in Korean | WPRIM | ID: wpr-109730

ABSTRACT

BACKGROUND: Basic Fibroblast Growth Factor (bFGF) is known to be closely related to myelofibrosis and hematopoiesis including magakaryopoiesis. The main bone marrow finding in patients with idiopathic thrombocytopenic purpura (ITP) is an increased megakaryopoiesis without myelofibrosis. Purposes of this study are to evaluate the changes in bFGF expression pattern in the bone marrow of patients with ITP and to correlate them with the plasma concentrations of bFGF. METHODS: Paraffin-sections of bone marrow biopsies from 17 cases ITP and 7 cases normal controls, without pathological alterations, were investigated by immunohistochemistry for bFGF and CD68. The plasma levels of bFGF were evaluated by enzyme immunoassay in 7 cases of ITP and controls. RESULTS: The bFGF was strongly expressed in stromal cells and weakly in megakaryocytes in normal controls. The density of the bFGF-expressing stromal cells was decreased in 70% (12/17) of the patients with ITP, compared with none in the other controls. The number of stromal cells in patients with ITP was similar to those in the control groups. The bFGF plasma levels were significantly lower in almost all the ITP patients compared to the control group. CONCLUSIONS: The results indicate that concentrations of bFGF in plasma and bone marrow stromal cells of ITP were decreased. Although the mechanism of low cellular and plasma concentrations of bFGF needs to be elucidated, these findings may complement the serologic and morphological diagnosis of ITP.


Subject(s)
Humans , Biopsy , Bone Marrow , Complement System Proteins , Diagnosis , Fibroblast Growth Factor 2 , Hematopoiesis , Immunoenzyme Techniques , Immunohistochemistry , Megakaryocytes , Mesenchymal Stem Cells , Plasma , Primary Myelofibrosis , Purpura, Thrombocytopenic, Idiopathic , Stromal Cells
SELECTION OF CITATIONS
SEARCH DETAIL